
Patroni 3.0:
What's New and
Future Plans
PGConf.DE 2023, Essen

Alexander Kukushkin

2023-06-27

1

About me

Alexander Kukushkin

Principal Software Engineer @Microsoft

The Patroni guy

akukushkin@microsoft.com

Twitter: @cyberdemn

2

https://twitter.com/Microsoft
mailto:alexander.kukushkin@zalando.de
https://twitter.com/cyberdemn

Agenda

● Brief introduction to automatic failover and Patroni

● New features

● Bug fixes

● Future plans

● Live Demo

3

High availability with Patroni

4

Primary

Standby

Etcd cluster
(Quorum)

I am the leader!

Who is the leader?

Distributed Configuration (Key-Value) Store

● Consul, Etcd (v2/v3), Zookeeper, Kubernetes API
● Service Discovery

○ Every Postgres node maintains a key with its state

○ Leader key points to the primary

● Lease/Session/TTL to expire data (i.e. leader key)

● Atomic CAS operations

● Watches for important keys (i.e. leader key)
5

Patroni: Normal operation

6

Node APrimary

Node BStandby

Node CStandby

/leader: A, ttl: 30

UPDATE /leader, A, ttl=30, prev=A

WATCH /leader

WATCH /leader

SUCCESS

Patroni: primary dies, leader key holds

7

Node APrimary

Node BStandby

Node CStandby

/leader: A, ttl: 7
WATCH /leader

WATCH /leader

BANG!

Patroni: leader key expires

8

Node A

Node BStandby

Node CStandby

/leader: A, ttl: 0
NOTIFY /leader, expired=true

NOTIFY /leader, expired=true

Patroni: leader race

9

Node A

Node BStandby

Node CStandby

Node B:
GET http://A:8008/patroni -> failed/timeout
GET http://C:8008/patroni -> wal_lsn: 100

Node C:
GET http://A:8008/patroni -> failed/timeout
GET http://B:8008/patroni -> wal_lsn: 100

Patroni: leader race

10

Node A

Node BStandby

Node CStandby

CREATE /leader, B,
ttl=30, prevExists=false

CREATE /leader, C,

ttl=30, prevExists=false

FAIL

SUCCESS

Patroni: promote and continue replication

11

Node A

Node BStandby

Node CPrimary

WATCH /leader

promote

New Features

12

DCS Failsafe Mode

● Case: Postgres is running as primary
only when Patroni can maintain
leader lock in DCS

● Before: primary is demoted when
lock can’t be updated

● Now: Patroni will keep primary if all
members of the cluster agree with it

13

$ patronictl edit-config

+++
@@ -4,3 +4,4 @@
 use_pg_rewind: true
retry_timeout: 10
ttl: 30
+failsafe_mode: on

Apply these changes? [y/N]: y
Configuration changed

Documentation: DCS Failsafe Mode

https://patroni.readthedocs.io/en/latest/dcs_failsafe_mode.html

Citus integration

14

CoordinatorPrimary Worker 1Primary

Worker 2Primary

Worker 3Primary

citus=# SELECT nodeid, groupid, nodename
FROM pg_dist_node order by groupid;
 nodeid | groupid | nodename
--------+---------+-------------
 1 | 0 | 172.19.0.9
 3 | 1 | 172.19.0.7
 2 | 2 | 172.19.0.2
 4 | 3 | 172.19.0.13
(4 rows)

Documentation: Citus support

https://patroni.readthedocs.io/en/latest/citus.html

Logical Failover Slots

● Case: logical replication slots are lost
after failover.

● Before: don’t allow connections
before logical slots are recreated

● Now: copy slots from the primary and
use pg_replication_slot_advance() to
keep logical slot ready.

15

$ patronictl edit-config

+++

@@ -1,6 +1,12 @@

 loop_wait: 10

 retry_timeout: 10

 ttl: 30

+permanent_slots:

+ my_slot:

+ database: testdb

+ plugin: test_decoding

Apply these changes?

Configuration changed

synchronous_mode improvements

● Support multiple synchronous standbys
(synchronous_node_count) @Krishna Sarabu
○ Pick standby nodes based on replication lag

(maximum_lag_on_syncnode)
○ Prefer nodes without nofailover tag

● Wait for standby to become really synchronous
before exposing its name to DCS.

16

REST API improvements: security

● Limit available ciphers: restapi.ciphers @Gunnar "Nick" Bluth

● Encrypted TLS keys: restapi.keyfile_password @Jonathan Katz

○ See also ctl.keyfile_password

● Restrict incoming IPs: restapi.allowlist and
restapi.allowlist_include_members

17

REST API improvements: endpoints

● GET /metrics – in Prometheus format @Mark Mercado, @Michael

Banck

● GET /readiness and GET /liveness – useful on K8s

● Load-balancing based on user-defined tags: @Arman Jafari Tehrani

○ GET /replica?lag=10MB&tag_key1=val1

○ GET /read-only?tag_key1=val1&tag_key2=val2

Documentation: REST API

18

https://patroni.readthedocs.io/en/latest/rest_api.html#health-check-endpoints

pg_rewind improvements

19

● Postgres v13+ supports pg_rewind
--restore-target-wal

○ But, opt out --restore-target-wal on v13 and v14 if
postgresql.conf if outside of $PGDATA
(Debian/Ubuntu) @Gunnar "Nick" Bluth

● For older versions Patroni tries to fetch missing WALs
when pg_rewind fails

pg_rewind improvements

● Archive WAL’s before calling pg_rewind on the old primary
○ pg_rewind might remove WAL’s even if they are

needed for Postgres to start

● Fully support pg_rewind in a standby cluster
○ Make it possible to specify multiple hosts in the

standby cluster configuration @Michael Banck

20

https://commitfest.postgresql.org/43/3874/

Configuration

● Configuration directories @Floris van Nee
○ YAML files (Patroni config) in a directory are

loaded and applied in alphabetical order

● Advanced validation of PostgreSQL parameters
○ Discard unknown parameters or if the value isn’t

correct.

21

General improvements

● Removed support of Python < 3.6
○ Introduced type hints!
○ Psycopg 3!

● pre_promote - run a script before pg_ctl promote
○ Abort if the exit code != 0

● before_stop - run a script before pg_ctl stop @Le Duane
○ pgbouncer PAUSE, terminate Debezium connections

22

Bug Fixes
23

TCP keepalives

● Case: Etcd v3 and K8s API are using long-polling
connections for WATCH requests
○ response with infinite stream of chunked data

● Before: TCP connection could stay around even when the
other side is gone
○ Stale data :(

● Now: bad sockets are detected/closed within TTL seconds

24

Sloooow execution and freezes of heart-beats

● Case: check presence of $PGDATA on every heart-beat

● Before: os.listdir()
○ Could be very sloooow when system is stressed

■ We have seen it taking more than TTL seconds

● Now: first check presence of
$PGDATA/global/pg_control file

25

Sometimes broken switchover with Debezium

● Case: Postgres on stop waits until all WALs are streamed
○ Debezium doesn’t properly handle keepalive messages

● Before: Patroni keeps updating the leader key while Postgres
is being stopped (indefinitely)

● Now: the leader key is removed when pg_controldata starts
reporting “shut down” and there are nodes ready to fail over

26

What is coming
Next?

27

Quorum based failover (aka Quorum Commit)

● PostgreSQL v10+: synchronous_standby_names="ANY k (*)"

○ Examples:

1. "ANY 2 (node1,node2)",

2. "ANY 2 (node1,node2,node3)"

● Challenge: figure out during failover whether the node was

synchronous

○ Was the node2 synchronous in the example 2?

28

Quorum based failover: math

● synchronous_standby_names="ANY 2 (m2,m3,m4)"

● /sync: {leader: m1, sync: [m2,m3,m4], quorum: 1}

● synchronous_standby_names="ANY 1 (m2,m3,m4)"

● /sync: {leader: m1, sync: [m2,m3,m4], quorum: 2}

29

Quorum based failover: challenges

30

● How to change synchronous_standby_names and /sync that we can

always identify sync node?

● Example:

○ synchronous_standby_names="ANY 1(m2,m3)"

○ /sync: {leader: m1, sync: [m2,m3], quorum: 1}

○ Node m4 joins the cluster:

1. change /sync to {leader: m1, sync: [m2,m3,m4], quorum: 2}

2. change synchronous_standby_names="ANY 1(m2,m3,m4)"

Integrate Patroni with pg_failover_slots

● https://github.com/EnterpriseDB/pg_failover_slots

● But Patroni already solved logical failover slots problem! Why?

○ Extension has mechanisms to wait for physical standbys before

sending data to logical subscriber

■ pg_failover_slots.standby_slot_names,

pg_failover_slots.standby_slots_min_confirmed

○ Works similar to synchronous_standby_names="ANY k (s1, s2, s3)"

31

https://github.com/EnterpriseDB/pg_failover_slots

Improve Citus support

● Manage pg_dist_poolinfo, to allow optional

cross-node communication via pgbouncer

● Register replica nodes in pg_dist_node

○ for read scaling (easy)

○ to use them as failover targets (hard)

32

region-2

 "standby" cluster

Multi-site Automatic Failover

33

region-1

 "primary" cluster

region-3

Get rid of non-inclusive terminology

● role: master -> primary

○ Most of preparations are done in 3.0

■ If running something older, better to upgrade

to 3.0.x first

● Kubernetes pod labels is a challenge

○ Migration will require temporary labels and 3

rolling upgrades
34

Live Demo!

35

Questions?

36

